SERIES:

SBT / TSExp

Exercice1(4points)

Soit la fonction f définie sur $\mathbb{R} - \{1\}$ par $f(x) = \frac{x^3 - 3x^2 + x}{1 - x}$

1°/ Déterminer a, b, c, d quatre réels tels que l'on ait pour tout $x \neq 1$,

$$f(x) = ax^2 + bx + c + \frac{d}{1-x}$$
 (2 pts)

2°/ Calculer I =
$$\int_{0}^{\frac{1}{2}} f(x)dx \quad (2 pts)$$

Exercice2 (6points)

Soit la suite (U_n) définie par $U_1 = \frac{3}{2}$ et pour tout $n \ge 1$, $U_{n+1} = \frac{3 + U_n}{2}$

1°/ Calculer U2 et U3.

 (U_n) est – elle une suite arithmétique ? Est – elle une suite géométrique ? $(2,5\ pts)$

 2° / Pour tout n≥1, on pose $V_n = 3 - U_n$. Montrer que (V_n) est une suite géométrique. (1,5pt)

 3° / Exprimer V_n en fonction de n. En déduire U_n en fonction de n.

Calculer $\lim_{n\to+\infty} U_n$. (2 pts)

TSVP 🗇 🕮

Problème.....(10 points)

Soient les nombres complexes : $z_1 = \sqrt{3} - i$; $z_2 = -\sqrt{2} + \sqrt{2}i$ et $z_3 = -1 + \sqrt{3}i$

 1° / Déterminer le module et un argument des complexes z_1 , z_2 et z_3 .

En déduire que les points M_1 , M_2 et M_3 d'affixes respectives z_1 , z_2 et z_3 appartiennent à un même cercle que l'on déterminera. Faire la représentation graphique $(3 \ pts)$.

2°/ On pose
$$z_4 = -2 z_1 \left(\frac{z_2}{z_3}\right)^2$$
. Mettre z_4 sous la forme algébrique (1,5pt)

 3° / Déterminer les racines carrées de z_4 (1,5pt)

4°/ On pose $z_5 = -4z_1z_3$. Déterminer les racines quatrièmes de z_5 .

Faire la représentation graphique dans le plan. (2pts)

5°/ a) Résoudre dans C, l'équation :
$$z^2 - 2z + 2 = 0$$
 (1 pt)

b) Ecrire chacune des solutions sous forme exponentielle (1pt)