SERIES: SBT / TSExp

EXERCICE 1: (4 points)

1-/ soit
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$$

a-/ En utilisant la méthode d'intégration par partie, montrer que $I_n = (n-1)I_{n-2} - (n-1)I_n$ (On pourra remarquer que $\sin^n x = \sin x . \sin^{n-1} x$)

b-/ Calculer I₀; En déduire I₂ et I₄.

2-/ Soit le polynôme P (z) = $z^4 - 2z^3 + 3z^2 - 2z + 2$ d'inconnue complexe z **a-/** Montrer que si Z_0 est une solution de l'équation P (z) =0 alors son conjugué \bar{z}_0 est aussi solution de l'équation P (z) =0.

b-/ Calculer P (-i) puis résoudre dans \mathbb{C} l'équation P (z)=0.

c-/ Ecrire chacune des solutions sous forme exponentielle.

EXERCICE 2: (6 points)

1-/ soit la suite (U_n) définie sur N* par $\begin{cases} U_1 = 3 \\ U_{n+1} = U_n + n \end{cases}$

On considère la suite (V_n) définie par $V_n = U_{n+1} - U_n$ (1)

a-/ Exprimer V_n en fonction de n et montrer (V_n) est une suite arithmétique dont on déterminera le 1 er terme et la raison.

b-/ Calculer $S_n = V_1 + V_2 + V_3 + \dots + V_n$.

c-/ Utiliser la relation (1) pour trouver une autre expression de S_n . En déduire U_n en fonction de n. calculer la limite de U_n .

2-/ Une urne contient 15 boules indiscernables au toucher dont 10 sont rouges, 3 bleues et 2 vertes.

Le principe d'un jeu est le suivant : le joueur paye 50F au début de chaque jeu et ensuite il tire simultanément 2 boules de l'urne ;

- Le tirage d'une boule rouge ne rapporte rien
- Chaque boule bleue tirée rapporte 50 F
- Chaque boule verte tirée rapporte 250 F;

Un joueur joue une fois, quelle est la probabilité pour ce joueur :

a-/ de ne ni gagner, ni perdre ? (gagner 0 F).

b-/ de perdre 50F?

c-/ de gagner 50F?

d-/ de gagner 250F?

NB : Le gain algébrique du joueur est la différence entre le montant obtenu à l'issue du jeu et celui payé au début du jeu.

PROBLÈME: (10 points)

Soit la fonction numérique f définie sur \mathbb{R} par $f(x) = (x+2)e^{-x}$.

On désigne par(*C*) sa courbe représentative dans le plan muni d'un repère orthonormé.

- **1-/** Déterminer la limite de f(x) en puis en + . Interpréter graphiquement ces résultats.
- **2-/** a-/ Etablir que pour tout réel x $f'(x) = -(x+1)e^{-x}$, en déduire le signe de f'(x) puis le tableau de variation de f.
- b-/ Ecrire l'équation de la tangente (T) à la courbe (C) au point d'abscisse x = 0.
- c-/ Construire la courbe (C) et la tangente (T) dans le plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ (Unité 2 cm).
- **3-/** Démontrer que l'équation f(x) = 2 a deux solutions distinctes sur [-2; 4].
- **4-/** Soit g la fonction définie sur \mathbb{R} par $g(x) = (ax + b)e^{-x}$.
- a-/ Déterminer les réels a et b pour que g soit une primitive de f.
- b-/ Calculer en unité d'aire la valeur exacte de l'aire de la partie du plan limité par la courbe (C), l'axe des abscisses et les droites d'équations : x = -2 et x = 4.

Donner une valeur approchée de l'aire à 10 ⁻² près par défaut en cm².