SERIES

SBT / TSExp

EXERCICE 1: (5 points)

- 1- Simplifier l'expression : $E = \frac{e^{2x+1}}{e^{2x-1}}$
- 2- a) On considère la suite numérique (U_n) définie par : $\forall n \in \mathbb{N}$ $U_n = e^{2n-1}$.
 - b) Calculer U_0 , U_1 , U_2 , U_3 , U_{n+1} .
- c) Démontrer que la suite (U_n) est une suite géométrique dont on précisera la raison.
- d) Exprimer en fonction de n, la somme $S_n = \sum_{i=0}^n U_i = U_0 + U_1 + \dots + U_n$. Calculer $\lim_{n \to +\infty} S_n$.
- e) Trouver la valeur minimum de n telle que $S_n \ge 10$.

<u>NB</u>: On donne: e = 2.7; $e^2 = 7.3$; $e^3 = 19.7$; $\ln 171 = 5.14$.

- 3- Soit (V_n) la suite numérique définie par : \forall $n \in \mathbb{N}$ $V_n = \ln(U_n)$.
 - a) Exprimer la somme $S_n = V_0 + V_1 + \dots + V_n$ en fonction de n.
 - b) Exprimer le produit $P_n = U_0 \times U_1 \times \dots \times U_n$ en fonction de n.

EXERCICE 2: (5 points)

- 1. a) Résoudre dans \mathbb{R} l'équation : $z^2 (2+\sqrt{3})z + 2 + \sqrt{3} = 0$ On notera z₁ la solution dont la partie imaginaire est positive.
- b°) On considère les nombres complexes : $u = z_1 + 1$ et $v = u^2 2$

Le plan complexe étant muni d'un repère orthonormé $(O; \overrightarrow{e_1}; \overrightarrow{e_2})$ d'unité graphique 2 cm, placer les points A; B; C et D d'affixes respectives 1; z₁; u et v.

- c°) Démontrer que les points A, B et D sont alignés.
- 2- On considère la fonction Q définie sur par $\tilde{Q}(x) = x^4 + x^3 7x^2 x + 6$.
- a°) Calculer Q (1) et Q (-1). En déduire qu'il existe un polynôme du second degré
- $Q_1(x)$ tel que, pour tout nombre réel x, $Q(x) = (x-1)(x+1)Q_1(x)$.
- b°) Factoriser Q (x). Résoudre dans \mathbb{R} l'équation Q (x) = 0.
- c°) Résoudre l'équation $x \in \mathbb{R}$: $6 e^x 7e^{2x} + e^{3x} = 0$.
- 3- f est une fonction définie sur l'intervalle] -\infty; -1[par : $f(x) = \frac{x^3 + 3x^2 x 1}{x^2 + 1}$
- a) Déterminer les réels a, b, c et d tels que pour $x \ne 1$ $f(x) = ax^2 + bx + c + \frac{d}{x+1}$.
- b) Calculer l'intégrale : $I = \int_{-3}^{-2} f(x) dx$

c) Calculer les intégrales : $J = \int_0^{\frac{\pi}{2}} (\sin x + \cos x) dx$; $K = \int_0^2 e^x dx$; $L = \int_1^2 x e^x dx$

PROBLEME: (10 points)

Partie A

On considère la fonction numérique g définie sur \mathbb{R} par : $g(x)=e^x+x-5$

- 1- Etudier le sens de variation de g. (On ne demande pas de déterminer les limites de g, ni de construire sa courbe représentative).
- 2- a) Calculer g (0) et g (2).
- b) Démontrer que l'équation : x réel, $e^x + x 5 = 0$ admet une solution α et une seule.
 - c) Justifier l'encadrement $1,30 < \alpha < 1,31$.

Partie B

Soit f la fonction numérique définie sur l'intervalle] - ; 5[par : f(x)= ln (5 – x)

- 1- Etudier le sens de variation de f . Préciser les limites de f en 5 et en .
- 2- Prouver l'égalité : $f(\alpha) = \alpha$.
- 3- a) Démontrer que pour tout x de l'intervalle [0 ; 3] on a : $|f'(x)| \le \frac{1}{2}$.
 - b) En déduire que pour tout x de l'intervalle [0; 3] on a :

$$|f(x)-\alpha| \le \frac{1}{2} |x-\alpha|$$

- c) Démontrer que si $0 \le x \le 3$; alors $0 \le f(x) \le 3$.
- 4- Dans le plan muni d'un repère orthonormé (O ; i ; j) d'unité graphique 1 cm, on désigne par (C) la représentation graphique de la fonction f.
- a) Tracer la courbe (C), hachurer la partie du plan formée des points de $\begin{cases} \alpha \leq x \leq 4 \\ \cos(x) & \text{on notera} \end{cases}$ coordonnées (x; y) tels que : $\begin{cases} 0 \leq y \leq f(x) \\ 0 \leq y \leq f(x) \end{cases}$ On notera (S) cette partie.
 - b) En remarquant pour $x \neq 5$: $\frac{x}{x-5} = 1 + \frac{5}{x-5}$ justifier que : $\int_{\alpha}^{4} \frac{x}{x-5} dx = 4 6\alpha$.
- c) Prouver que l'aire A de la partie (S) est en cm², donnée par : $A = -\alpha^2 + 6\alpha 4$. (On pourra utiliser une intégration par parties).