REPUBLIQUE GABONAISE DIRECTION DU BACCALAUREAT

2012- MATHEMATIQUES

Série : I

www.jeunessepositive.com (Site d informations et de conseils a lemps: 4 heures réussite scolaire et professionnelle, recherche d'emploi, formation professionnelle, choix de métiers et autres ressources)

Exercice 1 (5 points)

Pour lancer un nouveau produit P sur le marché, une société de la place effectue un sondage auprès des éventuels clients. Dans le tableau ci-dessous :

x représente le prix de vente unitaire du produit P exprimé en centaines de francs CFA;

y représente la quantité du produit P demandée en millier.

Prix de vente unitaire x_i	3	3,5	4,5	6,5	8	10
Demande y _i	6,25	4,90	3,75	2,75	2,40	2,25

Le plan est rapporté à un repère orthogonal d'unités graphiques :

1 cm pour une centaine de francs CFA sur l'axe des abscisses;

2 cm pour un millier sur l'axe des ordonnées.

1. a) Représenter graphiquement le nuage des points $M_i(x_i; y_i)$.

b) La forme du nuage suggère-t-elle un ajustement affine? Justifier la réponse.

2. On effectue le changement de variable suivant : $w_i = lny_i$ où ln désigne la fonction logarithme népérien :

a) Recopier et compléter le tableau suivant :

(les valeurs de w_i seront arrondies à 10^{-4} près)

x_i	3	3,5	4,5	6,5	8	10
$w_i = lny_i$			Fig. 1			

b) Déterminer le coefficient de corrélation linéaire de la série $(x_i; w_i)$.

c) Déterminer, par la méthode des moindres carrés, une équation de la droite de régression de w en x.

d) En déduire qu'il existe deux nombres réels α et β tels que : $y = \alpha$. β^x . Donner les valeurs approchées de α et β à 10^{-3} près. Déterminer une estimation de la demande y en fonction du prix x.

e) En supposant que cette tendance est maintenue, déterminer le nombre d'unités de produit P que les consommateurs sont près à acheter si le prix de vente unitaire est fixé à 15 centaines de francs CFA.

Exercice 2 (5 points)

Le plan complexe est muni d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$. On considère l'application f définie sur \mathbb{C}^* par : $f(z) = \frac{1}{3} \left(z + \frac{1}{z}\right)$.

1. On désigne par K le point d'affixe $f\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$. Calculer les coordonnées de K.

2. Soit α un nombre réel. Résoudre dans \mathbb{C} l'équation (E) : $f(z) = \frac{2}{3}\cos\alpha$.

3. a) En déduire la résolution dans \mathbb{C} de l'équation (E') : $z^4 - 2(\cos\alpha)z^2 + 1 = 0$. (On donnera les solutions sous forme exponentielle).

b) Vérifier que les solutions de (E') sont deux à deux conjuguées.

c) Décomposer le polynôme à variable réelle x défini par : $P(x) = x^4 - 2(\cos x)x^2 + 1$ en un produit de deux polynômes du second degré à coefficients réels.

Page 1 sur 2

- 4. On considère l'application h du plan complexe dans lui-même qui, à tout point M d'affixe z associe le point M' d'affixe z' telle que : $2\left(z-\frac{1}{3}\right)=(1+i)\left(z'-\frac{1}{3}\right)$.
 - a) Démontrer que h est une similitude plane directe dont on précisera les éléments caractéristiques.
 - b) Démontrer que h est la composée d'une rotation et d'une homothétie dont on donnera les éléments caractéristiques.

Problème (10 points)

Soit la fonction numérique de la variable réelle x définie sur l'intervalle I=]0; $+\infty$ [par : $f(x) = \frac{1}{x^2}(x + \ln x)$.

On désigne par (C) la courbe représentative de f.

Partie A: Etude d'une fonction auxiliaire.

Soit h la fonction définie sur I par : h(x) = -x + 1 - 2lnx.

- 1. Calculer les limites de h aux bornes de I.
- 2. Etudier le sens de variation de h et dresser son tableau de variation.
- 3. Calculer h(1) et en déduire le signe de h(x) pour tout x élément de I.

Partie B: Etude d'une fonction.

- 1. a) Calculer les limites de f aux bornes de I.
 - b) Montrer que : $f'(x) = \frac{h(x)}{x^3}$
 - c) Etudier le sens de variation de f et dresser son tableau de variation complet.
- 2. Démontrer que l'équation f(x) = 0 admet une unique solution α sur I et que l'on a : $0.5 < \alpha < 0.6$.
- 3. Soit g la restriction de f à l'intervalle [1; $+\infty$ [.
 - a) Démontrer que g réalise une bijection de $[1; +\infty[$ sur un intervalle J à préciser. On désigne par g^{-1} l'application réciproque de g.
 - b) Résoudre dans J l'équation $g^{-1}(x) = e$.
 - c) Calculer $(g^{-1})'(e^{-2} + e^{-1})$
- 4. Construire la courbe (C) et la courbe de (Γ) dans un repère orthonormé ($0; \vec{\imath}, \vec{\jmath}$) d'unité graphique 2 cm.

Partie C: Mouvement d'un point

Dans le repère ci-dessus, un point mobile M a pour coordonnées:

$$\begin{cases} x = e^{t} \\ y = e^{-t} + te^{-2t} \end{cases} ; t \in [0; +\infty[$$

- 1. Démontrer que la trajectoire de M est une partie de (C) à préciser.
- 2. Déterminer les composantes du vecteur vitesse de M à l'instant t.
- 3. Représenter ce vecteur vitesse à l'instant t = 0